Recent publications
35. Collapse of a quantum vortex in an attractive two-dimensional Bose gas
S. Banerjee, K. Zhou, S. K. Tiwari, H. Tamura, R. Li, P. Kevrekidis, S. I. Mistakidis, V. Walther, C.-L. Hung, arXiv:2406.00863 (2024)
34. Trapped atoms and superradiance on an integrated nanophotonic microring circuit
Xinchao Zhou, Hikaru Tamura, Tzu-Han Chang and Chen-Lung Hung, Phys. Rev. X 14, 031004 (2024).
33. Observation of self-oscillating supersonic flow across an acoustic horizon in two dimensions
Hikaru Tamura, Sergei Khlebnikov, Cheng-An Chen, Chen-Lung Hung, arXiv:2304.10667 (2023).
32. Nanophotonic cavity cooling of a single atom
Chenwei Lv, Ming Zhu, Sambit Banerjee, Chen-Lung Hung, arXiv:2304.0474, Phys. Rev. A 108, 023120 (2023).
31. Observation of self-patterned defect formation in atomic superfluids - from ring dark solitons to vortex dipole necklaces
Hikaru Tamura, Cheng-An Chen, and Chen-Lung Hung, Phys. Rev. X 13, 031029 (2023).
30. Coupling single atoms to a nanophotonic whispering-gallery-mode resonator via optical guiding
Xinchao Zhou, Hikaru Tamura, Tzu-Han Chang, Chen-Lung Hung, arXiv:2111.01119; Phys. Rev. Lett. 130, 103601 (2023).
29. Realization of efficient 3D tapered waveguide-to-fiber couplers on a nanophotonic circuit
Tzu-Han Chang, Xinchao Zhou, Hikaru Tamura, and Chen-Lung Hung, Opt. Express 30, 31643-31652 (2022).
28. Observation of scale invariance in two-dimensional matter-wave Townes solitons
Cheng-An Chen, Chen-Lung Hung, arXiv:2103.0315 (2021); Phys. Rev. Lett. 127, 023604 (2021).
27. Observation of quasiparticle pair-production and quantum entanglement in atomic quantum gases quenched to an attractive interaction
Cheng-An Chen, Sergei Khlebnikov, Chen-Lung Hung, arXiv:2102.11215 (2021); Phys. Rev. Lett. 127, 060404 (2021).
26. Observation of Universal Quench Dynamics and Townes Soliton Formation from Modulational Instability in Two-Dimensional Bose Gases
Cheng-An Chen and Chen-Lung Hung, arXiv:1907.12550 (2019); Phys. Rev. Lett. 125, 250401 (2020).
25. Efficiently-coupled microring circuit for on-chip cavity QED with trapped atoms
Tzu-Han Chang, Xinchao Zhou, Ming Zhu, Brian M. Fields, Chen-Lung Hung, Appl. Phys. Lett. 117, 174001 (2020); arXiv:2008.04263 (2020)
24. Resonator-assisted single molecule quantum state detection
Ming Zhu, Yan-Cheng Wei, Chen-Lung Hung, arXiv:2007.04498 (2020); Phys. Rev. A 102, 023716 (2020).
23. Microring resonators on a membrane optical circuit for atom-light interactions
Tzu-Han Chang, Brian Fields, May E Kim, Chen-Lung Hung, arXiv:1905.10978 (2019); Optica 6(9), 1203-1210 (2019).
22. Two-Dimensional Photonic Crystals for Engineering Atom-Light Interactions
Su-Peng Yu, Juan A. Muniz, Chen-Lung Hung, H. J. Kimble, arXiv:1812.08936 (2018), PNAS 1822110116 (2019).
21. Trapping single atoms on a nanophotonic circuit with configurable tweezer lattices
May E. Kim, Tzu-Han Chang, Brian M. Fields, Cheng-An Chen, Chen-Lung Hung, arXiv:1810.08769 (2018); Nature Communications 10, 1647 (2019).
20. Colloquium: Quantum matter built from nanoscopic lattices of atoms and photons
D. E. Chang, J. S. Douglas, A. González-Tudela, C.-L. Hung, HJ Kimble, Rev. Mod. Phys. 90 (3), 031002 (2018).
19. Ultracold molecule assembly with photonic crystals
J. Perez-Rios, M. E. Kim, C.-L. Hung, NJP 19, 123035 (2017).
18. Quantum Spin Dynamics with Pairwise-Tunable, Long-Range Interactions
C.-L. Hung, A. González-Tudela, J. I. Cirac, H. J. Kimble, PNAS 2016 113 (34) E4946-E4955 (2016).
17. Superradiance for atoms trapped along a photonic crystal waveguide
A. Goban*, C. -L. Hung*, J. D. Hood*, S. -P. Yu*, J. A. Muniz, O. Painter, and H. J. Kimble, arXiv:1503.04503 (2015); Phys. Rev. Lett. 115, 063601 (2015).
16. Realizing quantum many-body models with cold atoms coupled to photonic crystals
J. S. Douglas, H. Habibian, C.-L. Hung, A. V. Gorshkov, H. J. Kimble and D. E. Chang, arXiv:1312.2435; Nature Photonics 9, 326-331 (2015).
15. Subwavelength vacuum lattices and photon-mediated atomic interactions in photonic crystals
A. González-Tudela, C.-L. Hung, D. E. Chang, I. Cirac and H. J. Kimble, arXiv:1407.7336 (2014), Nature Photonics 9, 320-325 (2015).
14. Atom-light interactions in photonic crystals
A. Goban*, C.-L. Hung*, S.-P. Yu*, J. D. Hood*, J. A. Muniz*, J. H. Lee, M. J. Martin, A. C. McClung, K. S. Choi, D. E. Chang, O. Painter and H. J. Kimble, Nature Communications 5, 3808 (2014).
13. From cosmology to cold atoms: observation of Sakharov oscillations in a quenched atomic superfluid
C.-L. Hung , V. Gurarie and C. Chin, Science 341, 1213 (2013).
Quantum optics, cold atoms and nanophotonics (2013-2014)
16. Subwavelength vacuum lattices and photon-mediated atomic interactions in photonic crystals
A. González-Tudela, C.-L. Hung, D. E. Chang, I. Cirac and H. J. Kimble. arXiv:1407.7336 (2014), Nature Photonics 9, 320-325 (2015).
15. Realizing quantum many-body models with cold atoms coupled to photonic crystals
J. S. Douglas, H. Habibian, C.-L. Hung, A. V. Gorshkov, H. J. Kimble and D. E. Chang. arXiv:1312.2435 , Nature Photonics 9, 326-331 (2015).
14. Atom-light interactions in photonic crystals
A. Goban*, C.-L. Hung,* S.-P. Yu*, J. D. Hood*, J. A. Muniz*, J. H. Lee, M. J. Martin, A. C. McClung, K. S. Choi,
D. E. Chang, O. Painter and H. J. Kimble Nature Communication 5, 3808 (2014).
13. Nanowire photonic crystal waveguides for single-atom trapping and strong light-matter interactions
S.-P. Yu, J. D. Hood, J. A. Muniz, M. J. Martin, R. Norte, C.-L. Hung, S. M. Meenehan, J. D. Cohen,
O. Painter and H. J. Kimble Appl. Phys. Lett. 104, 111103 (2014).
12. Trapped atoms in one-dimensional photonic crystals
C.-L. Hung,* S. M. Meenehan*, D. E. Chang, O. Painter and H. J. Kimble New J. Phys. 15 083026 (2013).
Quantum gas, few- and many-body physics (2008-2013)
11. Quench dynamics in Bose condensates in the presence of a bath: theory and experiment
A. Rancon, C.-L. Hung, C. Chin and K. Levin Phys. Rev. A 88, 031601(Rapid Commun.) (2013).
10. From cosmology to cold atoms: observation of Sakharov oscillations in a quenched atomic superfluid
C.-L. Hung, V. Gurarie and C. Chin, Science 341, 1213 (2013). Selected for a Science Perspective.
9. Strongly interacting two-dimensional Bose gases
L.-C. Ha, C.-L. Hung, X. Zhang, U. Eismann, S.-K. Tung and C. Chin Phys. Rev. Lett. 110, 145302 (2013).
8. Quantum critical behavior of ultracold atoms in two-dimensional optical lattices
X. Zhang, C.-L. Hung, S.-K. Tung and C. Chin, Science 335, 1070 (2012).
7. Extracting density-density correlations from in situ images of atomic quantum gases
C.-L. Hung, X. Zhang, L.-C. Ha, S.-K. Tung, N. Gemelke and C. Chin, New J. Phys. 13, 075019,
Focus issue on Quantum simulation and an IOP select (2011).
6. Exploring quantum criticality based on ultracold atoms in optical lattices
X. Zhang, C.-L. Hung, S.-K. Tung, N. Gemelke and C. Chin, New J. Phys. 13, 045011,
Focus issue on Strongly correlated quantum fluids: From ultracold quantum gases to QCD plasmas (2011).
5. Observation of scale invariance and universality in two-dimensional Bose gases
C.-L. Hung, X. Zhang, N. Gemelke and C. Chin, Nature 470, 239 (2011).
4. Slow mass transport and statistical evolution of an atomic gas across the superfluid-Mott insulator transition
C.-L. Hung, X. Zhang, N. Gemelke and C. Chin, Phys. Rev. Lett. 104, 160403 (2010).
3. In situ observation of incompressible Mott-insulating domains in ultracold atomic gases
N. Gemelke, X. Zhang, C.-L. Hung and C. Chin, Nature 460, 995 (2009).
2. Exploring universality of few-body physics based on ultracold atoms near Feshbach resonances
N. Gemelke, C.-L. Hung, X. Zhang and C. Chin, Pushing the frontiers of atomic physics,
Proceedings of the XXI International Conference on Atomic Physics p.240 (2008).
1. Accelerating evaporative cooling of atoms into Bose-Einstein condensation in optical traps
C.-L. Hung, X. Zhang, N. Gemelke and C. Chin, Phys. Rev. A 78, 011604 (Rapid Communication) (2008).
Book Chapters
In situ imaging of atomic quantum gases
Chen-Lung Hung and Cheng Chin, invited book chapter in Quantum gas experiments - exploring many-body states
edited by P. Törmä and K. Sengstock (Imperial College Press, London).